Structural Equation Model and its Applications | 结构方程模型及其应用 (普通话)

The Chinese University of Hong Kong via Coursera

Go to Course: https://www.coursera.org/learn/jiegou-fangcheng-moxing

Introduction

### Course Review: Structural Equation Model and its Applications | 结构方程模型及其应用 (普通话) **Overview:** The course "Structural Equation Model and its Applications" (SEM) offered on Coursera is an excellent opportunity for anyone interested in advanced data analysis techniques in various fields such as sociology, psychology, education, economics, management, and marketing. This course delves into structural equation modeling, a cutting-edge statistical method that addresses the limitations of traditional regression and factor analyses, providing comprehensive insights into complex interdependencies among multiple variables. With a robust curriculum that blends theoretical knowledge with practical application, students will explore a range of topics including variance analysis, regression analysis, path analysis, and factor analysis. The course also introduces the LISREL software, widely recognized for its capabilities in conducting SEM, thereby equipping participants with essential tools for multi-level data and longitudinal data analysis. **Course Structure:** The syllabus is logically structured, progressing from basic concepts to more advanced applications. Below is a summary of the weekly modules: 1. **Introduction**: An overview of SEM and its significance in data analysis. 2. **Exploratory and Confirmatory Factor Analysis**: Techniques for identifying underlying relationships in data. 3. **Principles of SEM**: Fundamental statistical principles that guide SEM. 4. **Confirmatory Factor Analysis**: A deep dive into validating factor structures. 5. **Multi Trait-Multi Method Models**: Analysis of complex models that consider multiple measurement methods. 6. **Overall Model**: Concepts related to comprehensive structural models. 7. **Higher-Order Factor Analysis**: Techniques for dealing with multifaceted models. 8. **Simplex Models**: An introduction to simplex modeling. 9. **Multi-group SEM Analysis**: Insights into conducting SEM across different groups. 10. **Modeling and Analysis Steps**: A detailed guide through the process of performing SEM. 11. **Data Issues**: Practical discussions on data challenges and model fitting problems. 12. **Reading SPSS Data**: Techniques for incorporating SPSS datasets into SEM analysis. 13. **Final Examination**: An assessment to gauge understanding and application of the course material. **Who Should Take This Course?** This course is ideally suited for individuals with a foundational understanding of statistics, including concepts such as standard deviation, t-tests, and correlation coefficients. Participants should be familiar with both regression and factor analysis to fully benefit from the course discussions. **Recommended Resources:** The accompanying textbook, "Structural Equation Model and Its Applications," serves as a valuable resource for deeper understanding and practical examples using LISREL software. **Why You Should Take This Course:** 1. **Comprehensive Understanding**: The course's structured approach ensures participants develop a solid understanding of SEM, making it valuable for those in research-oriented careers. 2. **Practical Application**: By focusing on software application (LISREL), students will leave the course with applicable skills for real-world data analysis. 3. **Diverse Applications**: The techniques learned can be applied in various fields, making the knowledge acquired transferable across disciplines. Whether you're a graduate student, a researcher, or a professional in a data analytics role, "Structural Equation Model and its Applications" is an indispensable addition to your skill set. The course not only enhances your methodological arsenal but also prepares you for the complexities inherent in modern-day data analysis. I wholeheartedly recommend it for anyone looking to advance their analytical capabilities in social science research or related areas.

Syllabus

课程资料

第一课:简介 (參考:第一章 引言)

第二课:探索性与验证性因子分析 (參考:第一章 引言)

第三课:SEM原理 (參考:第二章 结构方程模型简介)

第四课:验证性因子分析 (參考:第三章应用示范I 一、验证性因子分析)

第五课:多质多法模型 (參考:第三章应用示范I 二、多质多法模型)

第六课:全模型 (參考:第三章应用示范I 三、全模型)

第七课:高阶因子分析 (參考:第三章应用示范 四、高阶因子分析)

第八课:单纯形模型 (參考:第四章应用示范II:单纯形和多组模型 一、单纯形模型)

第九课:多组SEM分析 (參考:第四章应用示范II:单纯形和多组模型 二、多组验证性因子分析 三、多组分析:均值结构模型)

第十课:结构方程建模和分析步骤 (參考:第五章结构方程建模和分析步骤)

第十一课:涉及数据的问题 (參考:第六章专题讨论——涉及数据的问题 第七章专题讨论——涉及模型拟合的问题 第八章拟合指数)

第十二课:读取SPSS数据 (參考:附录III通过SPSS读取数据)

期末考

Overview

在社会学、心理学、教育学、经济学、管理学、市场学等研究领域的数据分析中,结构方程建模是当前最前沿的统计方法中应用最广、研究最多的一个。它包含了方差分析、回归分析、路径分析和因子分析,弥补了传统回归分析和因子分析的不足,可以分析多因多果的联系、潜变量的关系,还可以处理多水平数据和纵向数据,是非常重要的多元数据分析工具。本课程系统地介绍结构方程模型和LISREL软件的应用,内容包括:结构方程分析(包括验证性因子分析)的基本概念、统计原理、在社会科学研究中的应用、常用模型及其LISREL程序、结果的解释和模型评价。学员应具备基本的统计知识(如:标准差、t-检验、相关系数),理解回归分析和因子分析的概念。 注:本课程配套教材为《结构方程模型及其应用》(以LISREL软件为例)。

Skills

Reviews

授课内容讲解很清晰,作为结构方程模型的入门很合适。具体的应用还要自己事后练习,发现更多的问题,对这个领域进行更深入的了解。

This is a really good course on SEM. I strongly recommend it!

very good course for fresh researcher who want to master SEM skill. It's easy enough and gives me the whole picture of SEM.

老师的课程通俗易懂,听起来不会很枯燥,但是字幕有些地方语序和表达不是很准确,所以有的时候光看字幕会令人有点费解,但是配合老师的讲解会更好理解,还有做课后的测验碰到不会的题可以先接着往下学再做,因为有些题目,内容是从后面的章节抽的。

整个学习过程由浅入深,接受起来不是很困难,适合零基础学习,讲解的很清晰,老师也会及时的对课后疑问进行解答。如果老师能够讲几个从操作到结果分析完整的例子就更好了