Google Cloud via Coursera |
Go to Course: https://www.coursera.org/learn/smart-analytics-machine-learning-ai-gcp-es
**Course Review: Smart Analytics, Machine Learning, and AI on GCP en Español** In today's data-driven world, the ability to leverage analytics and machine learning is more critical than ever. For Spanish-speaking professionals looking to deepen their knowledge in these fields, Coursera offers an excellent course titled **Smart Analytics, Machine Learning, and AI on GCP en Español**. This course is not only comprehensive but also tailored to help learners understand how to effectively integrate machine learning into their data pipelines using Google Cloud Platform (GCP). ### Course Overview The course is designed to enhance an organization's capacity to extract valuable insights from vast amounts of data through the integration of machine learning processes. It covers a range of approaches, from using AutoML for minimal customization needs to the more in-depth functionalities available through Notebooks and BigQuery for those requiring tailored machine learning solutions. ### Syllabus Breakdown The course is divided into several well-structured modules, each focusing on key aspects of analytics and AI: 1. **Introducción**: This opening module sets the stage for what to expect from the course, providing a comprehensive overview of the syllabus. 2. **Introducción a Analytics y a la IA**: Here, learners are introduced to the various analytics options available on Google Cloud, paving the way for deeper understanding in subsequent modules. 3. **API de modelos de AA creadas previamente para datos no estructurados**: This module focuses on utilizing pre-trained AI models for unstructured data, an essential skill for dealing with common data scenarios. 4. **Análisis de macrodatos con Notebooks**: In this segment, participants learn to work with Notebooks, providing the tools needed for analyzing macro-level data effectively. 5. **Canalizaciones de AA de producción con Kubeflow**: This module teaches how to create production-level machine learning pipelines, featuring crucial tools like Kubeflow and AI Hub, which are integral for developing scalable models. 6. **Creación de modelos personalizados con SQL en BigQuery ML**: Participants delve into the world of BigQuery ML, learning how to create customized models using SQL—a valuable skill for data analysts and engineers. 7. **Creación de modelos personalizados con AutoML**: Focusing on AutoML, this module enables learners to create machine learning models with minimal coding, emphasizing accessibility for those who may not have a strong programming background. 8. **Resumen**: The course concludes with a summarization of key concepts, ensuring that participants leave with a clear understanding of the material covered. ### Recommendation I highly recommend the **Smart Analytics, Machine Learning, and AI on GCP en Español** course for several reasons: - **Language Accessibility**: Being conducted in Spanish, it is perfect for native speakers who may find it challenging to grasp complex technical concepts in English. This is a vital factor for inclusivity and accessibility in education. - **Hands-On Learning**: The course emphasizes practical applications of machine learning tools, which means learners not only get theoretical knowledge but also practical skills that they can apply in real-world scenarios. - **Industry-Relevant Skills**: As industries continue to adopt AI and machine learning, the skills learned in this course are increasingly in demand by employers, making it an excellent investment in your professional development. - **Structured Curriculum**: The detailed syllabus allows for a gradual increase in complexity, making it suitable for beginners as well as those with some prior knowledge of analytics and machine learning. In conclusion, if you are looking to enhance your expertise in analytics and machine learning specifically within the Google Cloud ecosystem, this course is an invaluable resource. It provides the knowledge, skills, and confidence to utilize AI effectively in your work, whether you're in data analysis, engineering, or even management roles seeking to incorporate data-driven strategies.
Introducción
En este módulo, presentamos el curso y el temario
Introducción a Analytics y a la IAEste módulo trata sobre las opciones de AA en Google Cloud
API de modelos de AA creadas previamente para datos no estructuradosEste módulo se enfoca en el uso de API de AA previamente creadas en sus datos no estructurados
Análisis de macrodatos con NotebooksEste módulo abarca el uso de Notebooks
Canalizaciones de AA de producción con KubeflowEn este módulo, se explica la creación de modelos de AA personalizados y se presentan Kubeflow y AI Hub
Creación de modelos personalizados con SQL en BigQuery MLEste módulo se trata de BigQuery ML
Creación de modelos personalizados con AutoMLCreación de modelos personalizados con AutoML
ResumenEste módulo es un resumen de los temas abordados en el curso
La incorporación del aprendizaje automático en las canalizaciones de datos aumenta la capacidad de las empresas para extraer estadísticas de sus datos. En este curso, veremos numerosas formas de incluir el aprendizaje automático en las canalizaciones de datos de Google Cloud según el nivel de personalización que se necesite. Para una personalización escasa o nula, en el curso se aborda AutoML. Para obtener más capacidades de aprendizaje automático a medida, el curso presenta Notebooks y BigQuery
excelente curso para principiantes en este mundo del Machine Learning
Muy buen curso, se entiende muy bien como usar las herramientas en cada uno de los casos expuestos
GCP Ofrece opciones muy potentes para desarrollar programar de ML y AI. Recomendado