Go to Course: https://www.coursera.org/learn/mineria-de-datos-introduccion
### Course Review: Introducción a la Minería de Datos on Coursera #### Overview If you’re interested in harnessing the power of data to inform decisions or uncover insights, "Introducción a la Minería de Datos" on Coursera is an ideal starting point. This course offers a gradual and practical approach to understanding the foundational concepts of Data Mining and the most commonly used algorithms today. By the end of the course, you will not only grasp the significance of data management but also have the confidence to explore various real-world databases independently. This course serves as a perfect first step toward becoming a Data Scientist, equipping you with the essential skills needed to thrive in the data-driven world of tomorrow. #### Course Syllabus The syllabus is structured to offer a comprehensive introduction to various aspects of data mining, including: 1. **Reglas de Asociación** (Association Rules) - This section delves into the concept of association rules, which help discover interesting relationships between variables in large databases. Understanding these rules is crucial for market basket analysis and recommendation systems. 2. **Algoritmos de Clasificación I** (Classification Algorithms I) - Here, learners will be introduced to the fundamental classification algorithms, learning how to categorize data into predefined groups. This is a key function in many data processing applications. 3. **Algoritmos de Clasificación II** (Classification Algorithms II) - Building on the previous module, this section covers more complex classification algorithms. You’ll gain insights into advanced techniques that enhance the power of basic classifiers. 4. **Métricas de Evaluación de Clasificación** (Classification Evaluation Metrics) - Understanding how to evaluate the performance of your classification models is vital. This module teaches various metrics that help measure the accuracy and effectiveness of these models. 5. **Algoritmos de Clustering** (Clustering Algorithms) - Finally, this part of the course focuses on clustering algorithms which allow you to group data based on similarity without predefined labels, an essential skill in exploratory data analysis. #### Course Experience The course is designed with the learner in mind. Its step-by-step format ensures that even those without a background in data science can comfortably follow along. The practical, hands-on approach allows students to apply the concepts learned in lectures directly to datasets, reinforcing their understanding through real-world application. Each module is complemented by engaging videos, quizzes, and assignments that challenge you to think critically about the material. The community discussions are an added bonus, enabling you to interact with fellow learners and broaden your understanding of data mining's real-world implications. #### Recommendation I highly recommend "Introducción a la Minería de Datos" for anyone looking to embark on a career in data science or simply wishing to enhance their data analysis skills. The course is well-structured and thorough, making complex topics accessible to beginners. Whether you are a student, a professional looking to pivot your career, or someone keen on understanding data analysis, this course will provide you with the foundational knowledge needed to explore more advanced topics in data science. The skills you acquire will not only be valuable to your career trajectory but will also empower you to make data-driven decisions in various aspects of your personal and professional life. Enroll today on Coursera and take the first step toward opening new doors in the exciting field of data science!
Reglas de Asociación
Algoritmos de Clasificación IAlgoritmos de Clasificación II Métricas de Evaluación de ClasificaciónAlgoritmos de ClusteringEn este curso, aprenderás de manera gradual y práctica los conceptos básicos de Minería de Datos, junto a los algoritmos más utilizados hoy en día. Al finalizar el curso, serás capaz de entender la importancia de manejar la información y de explorar por ti mismo distintas bases de datos reales. Este curso es el primer paso para convertirte en un/a profesional con habilidades básicas de un científico de datos o Data Scientist, de manera tal que puedas abrirle la puerta al futuro.
Adquirí muchos conocimientos útiles para la manipulación de bases de datos y cómo debo interpretar los datos obtenidos a partir de la aplicación de algoritmos para identificar patrones en los datos
En uno de los ejercicios no se puede ver la totalidad de la pantalla, eso hace que no se pueda seguir el ejercicio. Agregaría más actividades prácticas. Las clases del profesor muy claras.
Muy agradecido con ambos tutores por el curso brindado, los puntos del curso fueron muy interesantes, a considerar personal creo que debió usarse un lenguaje como R para la parte practica.
Me hubiera gustado ver ejemplos de Algoritmos jerarquicos, k-means, dbscan con rapidminer. En general el curso me gusto y me fue de ayuda, ahora voy a continuar con otros cursos más complejos.
Excelente! Muy claras todas las explicaciones. No solo como realizar las cosas en rapidminer sino tambien la explicacion teorica de cada algoritmo y cuando se usa. Muy recomendable!