Go to Course: https://www.coursera.org/learn/geometra-analtica-preuniversitaria
### Course Review: Geometría Analítica Preuniversitaria If you are looking to deepen your understanding of analytic geometry and its applications in various fields, the course "Geometría Analítica Preuniversitaria" on Coursera offers a fantastic opportunity. This course delves into the study of geometric figures such as straight lines, circles, parabolas, ellipses, and hyperbolas, exploring their properties and applications in the real world. #### Course Overview "Geometría Analítica Preuniversitaria" encourages students to appreciate the geometric shapes that often surround us. It highlights fascinating facts, such as the movement of planets in elliptical orbits and the unique design of St. Peter’s Square in Vatican City, which is based on elliptical shapes. The course aims to show the relevance of geometry not only in mathematics but also in everyday life and architecture. #### Syllabus Details The syllabus is structured to provide a comprehensive understanding of analytic geometry. Below are the key components: 1. **Funciones (Functions)**: - Gain skills in graphing functions in one and two dimensions. - Develop proficiency in algebraic procedures. - Learn how to solve linear and quadratic equations. - Recognize geometric figures by inspecting the equations of second degree with two variables. - Extract the geometric elements of lines, circles, parabolas, ellipses, and hyperbolas. 2. **Línea recta (Straight Line)**: Understand the properties and equations of straight lines, and their applications. 3. **Circunferencia (Circle)**: Explore the characteristics of circles and how they relate to other geometric principles. 4. **La elipse (Ellipse)**: Delve into the fascinating world of ellipses, examining their properties and real-world occurrences. 5. **La hipérbola (Hyperbola)**: Learn about hyperbolas and their mathematical significance. 6. **La parábola (Parabola)**: Investigate parabolas, including their equations and practical uses. 7. **Rotaciones (Rotations)**: Study how different geometric figures can be transformed through rotations. 8. **Aplicaciones (Applications)**: Discover the practical uses of analytic geometry in various fields, reinforcing the concepts learned. #### Course Experience This course is designed to cater to pre-university students, but it’s also suitable for anyone looking to refresh or enhance their understanding of geometry. The lessons are detailed and well-structured, providing a mix of theoretical knowledge and practical applications. The interactive elements engage the learners, making complex concepts easier to grasp. #### Recommendations I highly recommend "Geometría Analítica Preuniversitaria" for students planning to enter a field that requires a strong foundation in mathematics or geometry. It not only equips you with the necessary skills but also enhances your appreciation for the geometric aspects of the world around you. The course's blend of theory and real-life application fosters a deeper understanding, ensuring you're well-prepared for advanced studies in mathematics or related disciplines. In conclusion, if you are passionate about geometrical shapes and their real-world applications, this course on Coursera is a worthwhile investment in your educational journey. Whether you're a high school student, a college freshman, or just a curious learner, you’ll find immense value in the knowledge and skills offered in this course.
Funciones
Al realizar este curso tendrás las siguientes habilidades:-Graficar funciones en una y dos dimensiones.-Destreza en uso de procedimientos del álgebra.-Solución de ecuaciones lineales y de segundo grado.-Reconocer figuras geométricas al inspeccionar una ecuación de segundo grado de dos variables.-Obtener los elementos geométricos de una línea recta, círculo, parábola, elipse o hipérbola.
Línea rectaCircunferenciaLa elipseLa hipérbolaLa parábolaRotacionesAplicacionesLíneas rectas, círculos, parábolas, elipses e hipérbolas son figuras geométricas que encontramos en nuestro derredor. Por ejemplo, mucha gente sabe que los planetas en nuestro sistema solar se mueven en órbitas elípticas teniendo al astro rey en un foco de esta figura. Sin embargo, pocos saben que la plaza de San Pedro en el Vaticano está construída sobre elipses donde sus focos se encuentran sobre las fuentes donde mucha gente se toma fotos. Estos son dos ejemplos que muestran la importancia de
Buenísimo curso para aprender las formas generales y canónicas de figuras conocidas. Las lecturas son concretas con cada tema; además, los videos ayudan a comprender las lecturas. Me gustó el curso.
Indicar cuantos decimales se deben poner en las preguntas abiertas.
para algunos ejercicios no hay información base para lograr entenderlos y resolverlos