Google Cloud via Coursera |
Go to Course: https://www.coursera.org/learn/data-lakes-data-warehouses-gcp-jp
### Course Review: Modernizing Data Lakes and Data Warehouses with GCP 日本語版 #### Overview In today's data-driven landscape, effective data management is crucial for businesses to thrive. The course “Modernizing Data Lakes and Data Warehouses with GCP 日本語版” offers a comprehensive introduction to the fundamental concepts of data lakes and data warehouses, specifically tailored for Japanese-speaking learners. This course is part of the “Data Engineering on Google Cloud” series and serves as the foundational module for those looking to enhance their understanding of data engineering within the Google Cloud Platform (GCP). This course skillfully delineates the key characteristics, use cases, and technical aspects of data lakes and data warehouses. It also highlights the pivotal role of data engineers and explores the benefits of implementing effective data pipelines in business operations. #### Syllabus Breakdown 1. **Introduction**: - This opening module lays the groundwork for the course series, providing context for both data engineering concepts and the specific content of this course. 2. **Overview of Data Engineering**: - A critical component, this module describes the role of the data engineer and elucidates why cloud-based data engineering is essential in today’s business landscape. The insights provided here set the stage for understanding the practical applications of data engineering. 3. **Building Data Lakes**: - This module goes into detail about the construction of data lakes, specifically focusing on how to utilize Google Cloud Storage as a data lake. The explanation of the architecture, features, and implementation strategies makes this section particularly valuable for beginners and seasoned professionals alike. 4. **Building Data Warehouses**: - Here, the course shifts its focus to data warehousing, introducing Google Cloud’s BigQuery as a premier solution. You’ll learn about its capabilities, performance, and how to leverage it for analytical data modeling. 5. **Summary**: - The concluding module summarizes the key takeaways from the course, helping learners reinforce their understanding and prepare for more advanced topics in the subsequent courses. #### Why You Should Take This Course - **Comprehensive Learning Approach**: The structured format and logical progression of the syllabus are designed to gradually build your knowledge, ensuring that both novices and experienced individuals can benefit. - **Focus on Practical Applications**: The course emphasizes real-world applications and the vital importance of data engineering in improving business functions, making the content not just theoretical but highly applicable. - **Accessible Language**: Offered in Japanese, this course is an excellent resource for Japanese-speaking individuals eager to dive into cloud technologies without the language barrier. - **Foundational Knowledge for Future Courses**: Completing this course readies students for more advanced modules, such as “Building Batch Data Pipelines on Google Cloud.” It’s a strategic starting point that opens doors to further specialization in data engineering. #### Recommendation I highly recommend “Modernizing Data Lakes and Data Warehouses with GCP 日本語版” for anyone interested in entering the field of data engineering, especially those who prefer learning in Japanese. This course not only equips you with the necessary knowledge about data lakes and warehouses but also enhances your understanding of how to utilize Google Cloud technologies effectively. Whether you are an aspiring data engineer, a business analyst, or just someone interested in expanding their cloud computing skills, this course provides essential knowledge that will serve as a solid foundation for your professional journey in the realm of data management in the cloud. Don’t hesitate to enroll and take your first step towards mastering data engineering on Google Cloud!
はじめに
このモジュールでは「Data Engineering on Google Cloud」コースシリーズと、この「Modernizing Data Lakes and Data Warehouses with Google Cloud」コースについて紹介します。
データ エンジニアリングの概要このモジュールではデータ エンジニアの役割を説明し、クラウドでデータ エンジニアリングを行うべき理由について理解を促します。
データレイクの構築このモジュールではデータレイクの概要に加え、Google Cloud で Cloud Storage をデータレイクとして使用する方法について説明します。
データ ウェアハウスの構築このモジュールでは、Google Cloud のデータ ウェアハウジング オプションである BigQuery について説明します。
まとめ主な学習ポイントのまとめ
"すべてのデータ パイプラインには、データレイクとデータ ウェアハウスという 2 つの主要コンポーネントがあります。このコースでは、各ストレージ タイプのユースケースを紹介し、Google Cloud で利用可能なデータレイクとデータ ウェアハウスのソリューションを技術的に詳しく説明します。また、データ エンジニアの役割や、効果的なデータ パイプラインが事業運営にもたらすメリットについて確認し、クラウド環境でデータ エンジニアリングを行うべき理由を説明します。 これは「Data Engineering on Google Cloud」シリーズの最初のコースです。このコースを修了したら、「Building Batch Data Pipelines on Google Cloud」コースに登録してください。"