Modernizing Data Lakes and Data Warehouses with GCP em Português Brasileiro

Google Cloud via Coursera

Go to Course: https://www.coursera.org/learn/data-lakes-data-warehouses-gcp-br

Introduction

**Course Review: Modernizing Data Lakes and Data Warehouses with GCP em Português Brasileiro** In the rapidly evolving field of data engineering, understanding the architecture and functionality of data lakes and data warehouses is essential. The Coursera course "Modernizing Data Lakes and Data Warehouses with GCP em Português Brasileiro" provides a comprehensive exploration of these concepts using Google Cloud Platform (GCP) as a practical framework. Here’s an in-depth look at the course, highlighting its structure, content, and overall value for prospective learners. ### Overview The course addresses two critical components of data pipelines: data lakes and data warehouses. It delves into their use cases, the available solutions on GCP, and emphasizes the role of a data engineer. Furthermore, it discusses the advantages of having a robust data pipeline for business operations and the necessity of working within cloud environments for effective data engineering. ### Course Structure The course is organized into several modules, each designed to progressively build a learner's understanding of the topics discussed: 1. **Introdução**: This module serves as an opening to the "Data Engineering on Google Cloud" series and sets the stage for what’s to come. It stresses the importance of data engineering in the current tech landscape. 2. **Introdução à Engenharia de Dados**: Here, learners explore the critical role of data engineers and the compelling reasons for pursuing data engineering within cloud environments. This foundational understanding is key for those looking to start or advance their careers in this field. 3. **Como Criar um Data Lake**: This module focuses on the concept of a data lake and provides hands-on guidance on utilizing Google Cloud Storage to implement a data lake. Participants will learn practical skills that can be applied directly to real-world projects. 4. **Como Criar um Data Warehouse**: Shifting gears, this section covers BigQuery, Google Cloud’s data warehousing solution. Learners will discover how to deploy effective data warehouse strategies and understand the technical details that make BigQuery a preferred choice for analysts and organizations alike. 5. **Resumo**: The course wraps up with a summary of key learning points, reinforcing the concepts covered and solidifying the knowledge gained throughout the lessons. ### Content Quality The content is detailed and technical, striking a balance between theory and practice. The instructor's expertise shines through, ensuring that complex concepts are presented in an accessible manner. The course materials are well-structured and engaging, facilitating a smooth learning experience. ### Recommendation I highly recommend "Modernizing Data Lakes and Data Warehouses with GCP em Português Brasileiro" for anyone looking to expand their skill set in data engineering, particularly those who are fluent in Portuguese. Whether you are a beginner or have some prior experience, this course offers valuable insights and practical knowledge that can be applied in various professional settings. The focus on GCP tools like Cloud Storage and BigQuery equips users with the skills to navigate modern data landscapes effectively. ### Closing Thoughts In conclusion, this Coursera course represents a significant step for professionals aiming to modernize their data engineering practices. With the increasing importance of data in decision-making processes, the ability to manage and utilize data lakes and warehouses effectively is a worthy investment in your career. Enroll today and take the first step toward mastering data engineering in the cloud!

Syllabus

Introdução

Este módulo é o primeiro da série "Data Engineering on Google Cloud" e do curso "Modernizing Data Lakes and Data Warehouses with Google Cloud".

Introdução à engenharia de dados

Neste módulo, descrevemos o papel de um engenheiro de dados e reforçamos os motivos para desenvolver a engenharia de dados na nuvem.

Como criar um data lake

Neste módulo, você vai saber o que é data lake e como usar o Cloud Storage no seu data lake do Google Cloud.

Como criar um data warehouse

Neste módulo, vamos falar sobre o BigQuery como uma opção de armazenamento em data warehouse no Google Cloud.

Resumo

Um resumo dos principais pontos de aprendizado

Overview

Os dois principais componentes de um pipeline de dados são data lakes e warehouses. Neste curso, destacamos os casos de uso para cada tipo de armazenamento e as soluções de data lake e warehouse disponíveis no Google Cloud de forma detalhada e técnica. Além disso, também descrevemos o papel de um engenheiro de dados, os benefícios de um pipeline de dados funcional para operações comerciais e analisamos por que a engenharia de dados deve ser feita em um ambiente de nuvem. Este é o primeiro curso

Skills

Reviews