Google Cloud via Coursera |
Go to Course: https://www.coursera.org/learn/batch-data-pipelines-gcp-es
**Course Review: Building Batch Data Pipelines on GCP en Español** In today’s data-driven landscape, the ability to manage and process large volumes of data efficiently is paramount for businesses aiming to maintain a competitive edge. The Coursera course titled *"Building Batch Data Pipelines on GCP en Español"* offers a comprehensive guide to understanding and implementing batch data pipelines using Google Cloud Platform (GCP). This course not only provides theoretical knowledge but also practical skills to help learners navigate various data processing paradigms effectively. ### Overview The course begins by addressing fundamental concepts related to data pipelines, focusing on three primary paradigms: Extract and Load (EL), Extract, Load, and Transform (ELT), and Extract, Transform, and Load (ETL). Understanding when to use each of these paradigms is crucial for any data engineer or professional looking to optimize data flow processes. The course also leverages several Google Cloud technologies for data transformation, including BigQuery, Spark on Dataproc, and Cloud Data Fusion, making it a practical choice for learners interested in cloud-based data solutions. ### Syllabus Breakdown 1. **Introducción** - The course begins with an introduction to its objectives and outlines what learners can expect to gain. This foundational overview is essential for setting the stage for deeper exploration into the world of batch data pipelines. 2. **Introducción a Building Batch Data Pipelines** - In this module, learners dive into the various methods of data loading (EL, ELT, ETL). It’s a critical segment that clarifies when to apply each method, allowing participants to make informed decisions in real-world scenarios. 3. **Ejecución de Spark en Dataproc** - This hands-on module teaches participants how to execute Hadoop jobs within Dataproc, utilize Google Cloud Storage effectively, and optimize Dataproc workloads. This is particularly beneficial for anyone looking to enhance their skills in handling big data in a distributed environment. 4. **Procesamiento de datos sin servidor con Dataflow** - Here, the course explores using Google Cloud Dataflow to assemble data processing pipelines. This serverless approach simplifies the complexity of data management, making it an appealing choice for developers seeking to minimize operational overhead. 5. **Administración de canalizaciones de datos con Cloud Data Fusion y Cloud Composer** - This module focuses on managing data pipelines using Cloud Data Fusion and Cloud Composer. By the end of this section, learners will understand the tools necessary to orchestrate complex workflows and maintain data pipelines efficiently. 6. **Resumen del curso** - The course concludes with a recap of the key points covered, ensuring that participants leave with a solid grasp of builds data pipelines on GCP. ### Final Thoughts & Recommendations *Building Batch Data Pipelines on GCP en Español* is an excellent course for anyone looking to deepen their understanding of data processing in the Google Cloud environment. It provides a mix of theoretical foundations and practical skills, ensuring that learners can apply what they’ve learned in real-world contexts immediately. I highly recommend this course to data engineers, aspiring data professionals, or anyone interested in mastering the art of building efficient data pipelines. The course is particularly advantageous for Spanish-speaking individuals who prefer learning in their native language, enhancing comprehension and engagement with the content. In conclusion, if you want to empower your skills in handling batch data pipelines and wish to leverage GCP’s powerful tools, this course is a must-take. Start your journey today, and unlock the potential to transform data into actionable insights with ease!
Introducción
En este módulo, presentamos el curso y el temario
Introducción a Building Batch Data PipelinesEn este módulo, se revisan los diferentes métodos de carga de datos: EL, ELT y ETL, y cuándo corresponde usarlos
Ejecución de Spark en DataprocEn este módulo, se muestra cómo ejecutar Hadoop en Dataproc, usar Cloud Storage y optimizar sus trabajos de Dataproc.
Procesamiento de datos sin servidor con DataflowEn este módulo, se aborda el uso de Dataflow para compilar sus canalizaciones de procesamiento de datos
Administración de canalizaciones de datos con Cloud Data Fusion y Cloud ComposerEn este módulo, se muestra como administrar canalizaciones de datos con Cloud Data Fusion y Cloud Composer
Resumen del cursoResumen del curso
Las canalizaciones de datos suelen realizarse según uno de los siguientes paradigmas: extracción y carga (EL); extracción, carga y transformación (ELT), o extracción, transformación y carga (ETL). En este curso, abordaremos qué paradigma se debe utilizar para los datos por lotes y cuándo corresponde usarlo. Además, veremos varias tecnologías de Google Cloud para la transformación de datos, incluidos BigQuery, la ejecución de Spark en Dataproc, gráficos de canalización en Cloud Data Fusion y proc
Excelente curso, muy bien explicado, las parcticas son muy utiles
excelente material, buena explicación de conceptos claves para la creación de pipelines, y porque elegir dataflow en vez de datafusion
Útil para comprender las herramientas que te da GCP para crear grandes canalizaciones de datos
se me presentaron varios problemas con los laboratorios